Mitochondrial permeability transition as a source of superoxide anion induced by the nitroaromatic drug nimesulide in vitro.

نویسندگان

  • Vincent K S Tay
  • Audrey S Wang
  • Koon Yeow Leow
  • Michie M K Ong
  • Kim Ping Wong
  • Urs A Boelsterli
چکیده

Nimesulide, a widely used nonsteroidal anti-inflammatory drug containing a nitroaromatic moiety, has been associated with rare but serious hepatic adverse effects. The mechanisms underlying this idiosyncratic hepatotoxicity are unknown; however, both mitochondrial injury and oxidative stress have been implicated in contributing to liver injury in susceptible patients. The aim of this study was, first, to explore whether membrane permeability transition (MPT) could contribute to nimesulide's mitochondrial toxicity and, second, whether metabolism-derived reactive oxygen species (ROS) were responsible for MPT. We found that isolated mouse liver mitochondria readily underwent Ca2+-dependent, cyclosporin A-sensitive MPT upon exposure to nimesulide (at >or=3 microM). Net increases in mitochondrial superoxide anion levels, determined with the fluorescent probe dihydroethidium, were induced by nimesulide only in the presence of Ca2+ and were cyclosporin A-sensitive, indicating that superoxide production was a consequence, rather than the cause, of MPT. In addition, nimesulide caused a rapid dissipation of the inner mitochondrial transmembrane potential (at >or=3 microM), followed by a concentration-dependent decrease in ATP biosynthesis. Because nimesulide, unlike the related nitroaromatic drug nilutamide, did not produce any detectable ROS during incubation with mouse hepatic microsomes, we conclude that mitochondrial uncoupling causes MPT and that ROS production is a secondary effect.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Natural Terpenes Prevent Mitochondrial Dysfunction, Oxidative Stress and Release of Apoptotic Proteins during Nimesulide-Hepatotoxicity in Rats

Nimesulide, an anti-inflammatory and analgesic drug, is reported to cause severe hepatotoxicity. In this study, molecular mechanisms involved in deranged oxidant-antioxidant homeostasis and mitochondrial dysfunction during nimesulide-induced hepatotoxicity and its attenuation by plant derived terpenes, camphene and geraniol has been explored in male Sprague-Dawley rats. Hepatotoxicity due to ni...

متن کامل

Methanol extract and fraction of Anchomanes difformis root tuber modulate liver mitochondrial membrane permeability transition pore opening in rats

Objective: Extracts of Anchomanes difformis (AD) are used in folkloric medicine to treat several diseases and infections. However, their roles in mitochondrial permeability transition pore opening are not known. Material and Methods: The viability of mitochondria isolated from Wistar rat liver used in this experiment, was assessed by monitoring their swel...

متن کامل

The anti-inflammatory drug, nimesulide (4-nitro-2-phenoxymethane-sulfoanilide), uncouples mitochondria and induces mitochondrial permeability transition in human hepatoma cells: protection by albumin.

Like other nonsteroidal anti-inflammatory drugs, nimesulide (4-nitro-2-phenoxymethane-sulfoanilide) triggers hepatitis in a few recipients. Although nimesulide has been shown to uncouple mitochondrial respiration and cause hepatocyte necrosis in the absence of albumin, mechanisms for cell death are incompletely understood, and comparisons with human concentrations are difficult because 99% of n...

متن کامل

Involvement of Cytochrome P-450 in n-Butyl Nitrite-Induced Hepatocyte Cytotoxicity

      Addition of n-butyl nitrite to isolated rat hepatocytes caused an immediate glutathione depletion followed by an inhibition of mitochondrial respiration, inhi- bition of glycolysis and ATP depletion. At cytotoxic butyl nitrite concentrations, lipid  peroxidation  occurred  before  the  plasma  membrane  was  disrupted. Cytochrome P-450 inhibitors inhibited peroxynitrite formation and prev...

متن کامل

l-Cystathionine Inhibits the Mitochondria-Mediated Macrophage Apoptosis Induced by Oxidized Low Density Lipoprotein

This study was designed to investigate the regulatory role of l-cystathionine in human macrophage apoptosis induced by oxidized low density lipoprotein (ox-LDL) and its possible mechanisms. THP-1 cells were induced with phorbol 12-myristate 13-acetate (PMA) and differentiated into macrophages. Macrophages were incubated with ox-LDL after pretreatment with l-cystathionine. Superoxide anion, apop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Free radical biology & medicine

دوره 39 7  شماره 

صفحات  -

تاریخ انتشار 2005